

The Qt Console for Jupyter

	Release

	5.4.0

	Date

	November 02, 2022

To start the Qt console:

$ jupyter qtconsole

	Installation
	Install using conda

	Install using pip

	Installing Qt (if needed)

	Configuration options
	Options

	Changes in Jupyter Qt console
	5.4

	5.3

	5.2

	5.1

	5.0

	4.7

	4.6

	4.5

	4.4

	4.3

	4.2

	4.1

	4.0

Overview

The Qt console is a very lightweight application that largely feels like a
terminal, but provides a number of enhancements only possible in a GUI, such as
inline figures, proper multi-line editing with syntax highlighting, graphical
calltips, and much more. The Qt console can use any Jupyter kernel.

[image: Qt console with embedded plots]

The Qt console with IPython, using inline matplotlib plots.

The Qt console frontend has hand-coded emacs-style bindings for text
navigation. This is not yet configurable.

Tip

Since the Qt console tries hard to behave like a terminal, by default it
immediately executes single lines of input that are complete. If you want
to force multi-line input, hit Ctrl-Enter at the end of the first line
instead of Enter, and it will open a new line for input. At any
point in a multi-line block, you can force its execution (without having to
go to the bottom) with Shift-Enter.

Inline graphics

One of the most exciting features of the Qt Console is embedded figures.
You can plot with matplotlib in IPython, or the plotting library of choice
in your kernel.

[image: _images/besselj.png]

Saving and Printing

The Qt Console has the ability to save your current session, as either HTML or
XHTML. Your inline figures will be PNG in HTML, or inlined as SVG in XHTML.
PNG images have the option to be either in an external folder, as in many
browsers’ “Webpage, Complete” option, or inlined as well, for a larger, but
more portable file.

Note

Export to SVG+XHTML requires that you are using SVG figures, which is not
the default. To switch the inline figure format in IPython to use SVG, do:

In [10]: %config InlineBackend.figure_format = 'svg'

Or, you can add the same line (c.Inline… instead of %config Inline…) to
your config files.

This will only affect figures plotted after making this call

The widget also exposes the ability to print directly, via the default print
shortcut or context menu.

See these examples of png/html and
svg/xhtml output. Note that syntax highlighting
does not survive export. This is a known issue, and is being investigated.

Colors and Highlighting

Terminal IPython has always had some coloring, but never syntax
highlighting. There are a few simple color choices, specified by the colors
flag or %colors magic:

	LightBG for light backgrounds

	Linux for dark backgrounds

	NoColor for a simple colorless terminal

The Qt widget, however, has full syntax highlighting as you type, handled by
the pygments [http://pygments.org/] library. The style argument exposes access to any style by
name that can be found by pygments, and there are several already
installed.

Screenshot of jupyter qtconsole --style monokai, which uses the ‘monokai’
theme:

[image: _images/colors_dark.png]

Note

Calling jupyter qtconsole -h will show all the style names that
pygments can find on your system.

You can also pass the filename of a custom CSS stylesheet, if you want to do
your own coloring, via the stylesheet argument. The default LightBG
stylesheet:

QPlainTextEdit, QTextEdit { background-color: white;
 color: black ;
 selection-background-color: #ccc}
.error { color: red; }
.in-prompt { color: navy; }
.in-prompt-number { font-weight: bold; }
.out-prompt { color: darkred; }
.out-prompt-number { font-weight: bold; }
/* .inverted is used to highlight selected completion */
.inverted { background-color: black ; color: white; }

Fonts

The Qt console is configurable via the ConsoleWidget. To change these, set the
font_family or font_size traits of the ConsoleWidget. For instance, to
use 9pt Anonymous Pro:

$> jupyter qtconsole --ConsoleWidget.font_family="Anonymous Pro" --ConsoleWidget.font_size=9

Process Management

With the two-process ZMQ model, the frontend does not block input during
execution. This means that actions can be taken by the frontend while the
Kernel is executing, or even after it crashes. The most basic such command is
via ‘Ctrl-.’, which restarts the kernel. This can be done in the middle of a
blocking execution. The frontend can also know, via a heartbeat mechanism, that
the kernel has died. This means that the frontend can safely restart the
kernel.

Multiple Consoles

Since the Kernel listens on the network, multiple frontends can connect to it.
These do not have to all be qt frontends - any Jupyter frontend can connect and
run code.

Other frontends can connect to your kernel, and share in the execution. This is
great for collaboration. The --existing flag means connect to a kernel
that already exists. Starting other consoles
with that flag will not try to start their own kernel, but rather connect to
yours. kernel-12345.json is a small JSON file with the ip, port, and
authentication information necessary to connect to your kernel. By default, this file
will be in your Jupyter runtime directory. If it is somewhere else,
you will need to use the full path of the connection file, rather than
just its filename.

If you need to find the connection info to send, and don’t know where your connection file
lives, there are a couple of ways to get it. If you are already running a console
connected to an IPython kernel, you can use the %connect_info magic to display the information
necessary to connect another frontend to the kernel.

In [2]: %connect_info
{
 "stdin_port":50255,
 "ip":"127.0.0.1",
 "hb_port":50256,
 "key":"70be6f0f-1564-4218-8cda-31be40a4d6aa",
 "shell_port":50253,
 "iopub_port":50254
}

Paste the above JSON into a file, and connect with:
 $> ipython <app> --existing <file>
or, if you are local, you can connect with just:
 $> ipython <app> --existing kernel-12345.json
or even just:
 $> ipython <app> --existing
if this is the most recent kernel you have started.

Otherwise, you can find a connection file by name (and optionally profile) with
jupyter_client.find_connection_file():

$> python -c "from jupyter_client import find_connection_file;\
print(find_connection_file('kernel-12345.json'))"
/home/you/Library/Jupyter/runtime/kernel-12345.json

Security

Warning

Since the ZMQ code currently has no encryption, listening on an
external-facing IP is dangerous. You are giving any computer that can see
you on the network the ability to connect to your kernel, and view your traffic.
Read the rest of this section before listening on external ports
or running a kernel on a shared machine.

By default (for security reasons), the kernel only listens on localhost, so you
can only connect multiple frontends to the kernel from your local machine. You
can specify to listen on an external interface by specifying the ip
argument:

$> jupyter qtconsole --ip=192.168.1.123

If you specify the ip as 0.0.0.0 or ‘*’, that means all interfaces, so any
computer that can see yours on the network can connect to the kernel.

Messages are not encrypted, so users with access to the ports your kernel is using will be
able to see any output of the kernel. They will NOT be able to issue shell commands as
you due to message signatures.

Warning

If you disable message signatures, then any user with access to the ports your
kernel is listening on can issue arbitrary code as you. DO NOT disable message
signatures unless you have a lot of trust in your environment.

The one security feature Jupyter does provide is protection from unauthorized execution.
Jupyter’s messaging system will sign messages with HMAC digests using a shared-key. The key
is never sent over the network, it is only used to generate a unique hash for each message,
based on its content. When the kernel receives a message, it will check that the digest
matches, and discard the message. You can use any file that only you have access to to
generate this key, but the default is just to generate a new UUID.

SSH Tunnels

Sometimes you want to connect to machines across the internet, or just across
a LAN that either doesn’t permit open ports or you don’t trust the other
machines on the network. To do this, you can use SSH tunnels. SSH tunnels
are a way to securely forward ports on your local machine to ports on another
machine, to which you have SSH access.

In simple cases, Jupyter’s tools can forward ports over ssh by simply adding the
--ssh=remote argument to the usual --existing... set of flags for connecting
to a running kernel, after copying the JSON connection file (or its contents) to
the second computer.

Warning

Using SSH tunnels does not increase localhost security. In fact, when
tunneling from one machine to another both machines have open
ports on localhost available for connections to the kernel.

There are two primary models for using SSH tunnels with Jupyter. The first
is to have the Kernel listen only on localhost, and connect to it from
another machine on the same LAN.

First, let’s start a kernel on machine worker, listening only
on loopback:

user@worker $> ipython kernel
[IPKernelApp] To connect another client to this kernel, use:
[IPKernelApp] --existing kernel-12345.json

In this case, the IP that you would connect
to would still be 127.0.0.1, but you want to specify the additional --ssh argument
with the hostname of the kernel (in this example, it’s ‘worker’):

user@client $> jupyter qtconsole --ssh=worker --existing /path/to/kernel-12345.json

Which will write a new connection file with the forwarded ports, so you can reuse them:

[JupyterQtConsoleApp] To connect another client via this tunnel, use:
[JupyterQtConsoleApp] --existing kernel-12345-ssh.json

Note again that this opens ports on the client machine that point to your kernel.

Note

the ssh argument is simply passed to openssh, so it can be fully specified user@host:port
but it will also respect your aliases, etc. in .ssh/config if you have any.

The second pattern is for connecting to a machine behind a firewall across the internet
(or otherwise wide network). This time, we have a machine login that you have ssh access
to, which can see kernel, but client is on another network. The important difference
now is that client can see login, but not worker. So we need to forward ports from
client to worker via login. This means that the kernel must be started listening
on external interfaces, so that its ports are visible to login:

user@worker $> ipython kernel --ip=0.0.0.0
[IPKernelApp] To connect another client to this kernel, use:
[IPKernelApp] --existing kernel-12345.json

Which we can connect to from the client with:

user@client $> jupyter qtconsole --ssh=login --ip=192.168.1.123 --existing /path/to/kernel-12345.json

Note

The IP here is the address of worker as seen from login, and need only be specified if
the kernel used the ambiguous 0.0.0.0 (all interfaces) address. If it had used
192.168.1.123 to start with, it would not be needed.

Manual SSH tunnels

It’s possible that Jupyter’s ssh helper functions won’t work for you, for various
reasons. You can still connect to remote machines, as long as you set up the tunnels
yourself. The basic format of forwarding a local port to a remote one is:

[client] $> ssh <server> <localport>:<remoteip>:<remoteport> -f -N

This will forward local connections to localport on client to remoteip:remoteport
via server. Note that remoteip is interpreted relative to server, not the client.
So if you have direct ssh access to the machine to which you want to forward connections,
then the server is the remote machine, and remoteip should be server’s IP as seen from the
server itself, i.e. 127.0.0.1. Thus, to forward local port 12345 to remote port 54321 on
a machine you can see, do:

[client] $> ssh machine 12345:127.0.0.1:54321 -f -N

But if your target is actually on a LAN at 192.168.1.123, behind another machine called login,
then you would do:

[client] $> ssh login 12345:192.168.1.16:54321 -f -N

The -f -N on the end are flags that tell ssh to run in the background,
and don’t actually run any commands beyond creating the tunnel.

See also

A short discussion of ssh tunnels: http://www.revsys.com/writings/quicktips/ssh-tunnel.html

Stopping Kernels and Consoles

Since there can be many consoles per kernel, the shutdown mechanism and dialog
are probably more complicated than you are used to. Since you don’t always want
to shutdown a kernel when you close a window, you are given the option to just
close the console window or also close the Kernel and all other windows. Note
that this only refers to all other local windows, as remote Consoles are not
allowed to shutdown the kernel, and shutdowns do not close Remote consoles (to
allow for saving, etc.).

Rules:

	Restarting the kernel automatically clears all local Consoles, and prompts remote
Consoles about the reset.

	Shutdown closes all local Consoles, and notifies remotes that
the Kernel has been shutdown.

	Remote Consoles may not restart or shutdown the kernel.

Qt and the REPL

Note

This section is relevant regardless of the frontend you use to write Qt
Code. This section is mostly there as it is easy to get confused and assume
that writing Qt code in the QtConsole should change from usual Qt code. It
should not. If you get confused, take a step back, and try writing your
code using the pure terminal based jupyter console that does not
involve Qt.

An important part of working with the REPL – QtConsole, Jupyter notebook,
IPython terminal – when you are writing your own Qt code is to remember that
user code (in the kernel) is not in the same process as the frontend. This
means that there is not necessarily any Qt code running in the kernel, and
under most normal circumstances there isn’t. This is true even if you are
running the QtConsole.

Warning

When executing code from the qtconsole prompt, it is not possible to
access the QtApplication instance of the QtConsole itself.

A common problem listed in the PyQt4 Gotchas [http://pyqt.sourceforge.net/Docs/PyQt4/gotchas.html#garbage-collection] is the fact that Python’s garbage
collection will destroy Qt objects (Windows, etc.) once there is no longer a
Python reference to them, so you have to hold on to them. For instance, in:

from PyQt4 import QtGui

def make_window():
 win = QtGui.QMainWindow()

def make_and_return_window():
 win = QtGui.QMainWindow()
 return win

make_window() will never draw a window, because garbage collection will
destroy it before it is drawn, whereas make_and_return_window() lets the
caller decide when the window object should be destroyed. If, as a developer,
you know that you always want your objects to last as long as the process, you
can attach them to the QApplication instance itself:

from PyQt4 import QtGui, QtCore

do this just once:
app = QtCore.QCoreApplication.instance()
if not app:
 # we are in the kernel in most of the case there is NO qt code running.
 # we need to create a Gui APP.
 app = QtGui.QApplication([])
app.references = set()
then when you create Windows, add them to the set
def make_window():
 win = QtGui.QMainWindow()
 app.references.add(win)

Now the QApplication itself holds a reference to win, so it will never be
garbage collected until the application itself is destroyed.

Embedding the QtConsole in a Qt application

There are a few options to integrate the Jupyter Qt console with your own
application:

	Use qtconsole.rich_jupyter_widget.RichJupyterWidget in your
Qt application. This will embed the console widget in your GUI and start the
kernel in a separate process, so code typed into the console cannot access
objects in your application. See examples/embed_qtconsole.py for an
example.

	Start an IPython kernel inside a PyQt application (
ipkernel_qtapp.py [https://github.com/ipython/ipykernel/blob/master/examples/embedding/ipkernel_qtapp.py]
in the ipykernel repository shows how to do this). Then launch the Qt
console in a separate process to connect to it. This means that the console
will be in a separate window from your application’s UI, but the code entered
by the user runs in your application.

	Start a special IPython kernel, the
ipykernel.inprocess.ipkernel.InProcessKernel, which allows a
QtConsole in the same process. See examples/inprocess_qtconsole.py
for an example. This allows both the kernel and the console interface to be
part of your application, but it is not well supported. We encourage you to
use one of the above options instead if you can.

Regressions

There are some features, where the qt console lags behind the Terminal
frontend:

	!cmd input: Due to our use of pexpect, we cannot pass input to subprocesses
launched using the ‘!’ escape, so you should never call a command that
requires interactive input. For such cases, use the terminal IPython. This
will not be fixed, as abandoning pexpect would significantly degrade the
console experience.

Installation

The Qt console requires Qt, such as
PyQt5 [https://www.riverbankcomputing.com/software/pyqt/intro],
PyQt4 [https://www.riverbankcomputing.com/software/pyqt/download], or
PySide [http://pyside.github.io/docs/pyside].

Although pip [https://pypi.python.org/pypi/pip] and
conda [http://conda.pydata.org/docs] may be used to install the Qt console,
conda is simpler to use since it automatically installs PyQt. Alternatively,
qtconsole installation with pip needs additional steps since pip cannot install
the Qt requirement.

Install using conda

To install:

conda install qtconsole

Note

If the Qt console is installed using conda, it will automatically
install the Qt requirement as well.

Install using pip

To install:

pip install qtconsole

Important

Make sure that Qt is installed. Unfortunately, Qt cannot be
installed using pip. The next section gives instructions on installing Qt.

Installing Qt (if needed)

We recommend installing PyQt with conda [http://conda.pydata.org/docs]:

conda install pyqt

or with a system package manager. For Windows, PyQt binary packages may be
used.

For example with Linux Debian’s system package manager, use:

sudo apt-get install python3-pyqt5 # PyQt5 on Python 3
sudo apt-get install python3-pyqt4 # PyQt4 on Python 3
sudo apt-get install python-qt4 # PyQt4 on Python 2

See also

Installing Jupyter [https://jupyter.readthedocs.io/en/latest/install.html]
The Qt console is part of the Jupyter ecosystem.

Configuration options

These options can be set in the configuration file,
~/.jupyter/jupyter_qtconsole_config.py, or
at the command line when you start Qt console.

You may enter jupyter qtconsole --help-all to get information
about all available configuration options.

Options

	ConnectionFileMixin.connection_fileUnicode
	Default: ''

JSON file in which to store connection info [default: kernel-<pid>.json]

This file will contain the IP, ports, and authentication key needed to connect
clients to this kernel. By default, this file will be created in the security dir
of the current profile, but can be specified by absolute path.

	ConnectionFileMixin.control_portInt
	Default: 0

set the control (ROUTER) port [default: random]

	ConnectionFileMixin.hb_portInt
	Default: 0

set the heartbeat port [default: random]

	ConnectionFileMixin.iopub_portInt
	Default: 0

set the iopub (PUB) port [default: random]

	ConnectionFileMixin.ipUnicode
	Default: ''

	Set the kernel’s IP address [default localhost].
	If the IP address is something other than localhost, then
Consoles on other machines will be able to connect
to the Kernel, so be careful!

	ConnectionFileMixin.shell_portInt
	Default: 0

set the shell (ROUTER) port [default: random]

	ConnectionFileMixin.stdin_portInt
	Default: 0

set the stdin (ROUTER) port [default: random]

	ConnectionFileMixin.transportany of 'tcp'``|’ipc’`` (case-insensitive)
	Default: 'tcp'

No description

	JupyterConsoleApp.confirm_exitCBool
	Default: True

Set to display confirmation dialog on exit. You can always use ‘exit’ or ‘quit’,
to force a direct exit without any confirmation.

	JupyterConsoleApp.connection_fileUnicode
	Default: ''

JSON file in which to store connection info [default: kernel-<pid>.json]

This file will contain the IP, ports, and authentication key needed to connect
clients to this kernel. By default, this file will be created in the security dir
of the current profile, but can be specified by absolute path.

	JupyterConsoleApp.control_portInt
	Default: 0

set the control (ROUTER) port [default: random]

	JupyterConsoleApp.existingCUnicode
	Default: ''

Connect to an already running kernel

	JupyterConsoleApp.hb_portInt
	Default: 0

set the heartbeat port [default: random]

	JupyterConsoleApp.iopub_portInt
	Default: 0

set the iopub (PUB) port [default: random]

	JupyterConsoleApp.ipUnicode
	Default: ''

	Set the kernel’s IP address [default localhost].
	If the IP address is something other than localhost, then
Consoles on other machines will be able to connect
to the Kernel, so be careful!

	JupyterConsoleApp.kernel_manager_classType
	Default: 'jupyter_client.manager.KernelManager'

The kernel manager class to use.

	JupyterConsoleApp.kernel_nameUnicode
	Default: 'python'

The name of the default kernel to start.

	JupyterConsoleApp.shell_portInt
	Default: 0

set the shell (ROUTER) port [default: random]

	JupyterConsoleApp.sshkeyUnicode
	Default: ''

Path to the ssh key to use for logging in to the ssh server.

	JupyterConsoleApp.sshserverUnicode
	Default: ''

The SSH server to use to connect to the kernel.

	JupyterConsoleApp.stdin_portInt
	Default: 0

set the stdin (ROUTER) port [default: random]

	JupyterConsoleApp.transportany of 'tcp'``|’ipc’`` (case-insensitive)
	Default: 'tcp'

No description

	Application.log_datefmtUnicode
	Default: '%Y-%m-%d %H:%M:%S'

The date format used by logging formatters for %(asctime)s

	Application.log_formatUnicode
	Default: '[%(name)s]%(highlevel)s %(message)s'

The Logging format template

	Application.log_levelany of 0``|``10``|``20``|``30``|``40``|``50``|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’``
	Default: 30

Set the log level by value or name.

	Application.logging_configDict
	Default: {}

Configure additional log handlers.

The default stderr logs handler is configured by the
log_level, log_datefmt and log_format settings.

This configuration can be used to configure additional handlers
(e.g. to output the log to a file) or for finer control over the
default handlers.

If provided this should be a logging configuration dictionary, for
more information see:
https://docs.python.org/3/library/logging.config.html#logging-config-dictschema

This dictionary is merged with the base logging configuration which
defines the following:

	A logging formatter intended for interactive use called
console.

	A logging handler that writes to stderr called
console which uses the formatter console.

	A logger with the name of this application set to DEBUG
level.

This example adds a new handler that writes to a file:

c.Application.logging_config = {
 'handlers': {
 'file': {
 'class': 'logging.FileHandler',
 'level': 'DEBUG',
 'filename': '<path/to/file>',
 }
 },
 'loggers': {
 '<application-name>': {
 'level': 'DEBUG',
 # NOTE: if you don't list the default "console"
 # handler here then it will be disabled
 'handlers': ['console', 'file'],
 },
 }
}

	Application.show_configBool
	Default: False

Instead of starting the Application, dump configuration to stdout

	Application.show_config_jsonBool
	Default: False

Instead of starting the Application, dump configuration to stdout (as JSON)

	JupyterApp.answer_yesBool
	Default: False

Answer yes to any prompts.

	JupyterApp.config_fileUnicode
	Default: ''

Full path of a config file.

	JupyterApp.config_file_nameUnicode
	Default: ''

Specify a config file to load.

	JupyterApp.generate_configBool
	Default: False

Generate default config file.

	JupyterApp.log_datefmtUnicode
	Default: '%Y-%m-%d %H:%M:%S'

The date format used by logging formatters for %(asctime)s

	JupyterApp.log_formatUnicode
	Default: '[%(name)s]%(highlevel)s %(message)s'

The Logging format template

	JupyterApp.log_levelany of 0``|``10``|``20``|``30``|``40``|``50``|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’``
	Default: 30

Set the log level by value or name.

	JupyterApp.logging_configDict
	Default: {}

Configure additional log handlers.

The default stderr logs handler is configured by the
log_level, log_datefmt and log_format settings.

This configuration can be used to configure additional handlers
(e.g. to output the log to a file) or for finer control over the
default handlers.

If provided this should be a logging configuration dictionary, for
more information see:
https://docs.python.org/3/library/logging.config.html#logging-config-dictschema

This dictionary is merged with the base logging configuration which
defines the following:

	A logging formatter intended for interactive use called
console.

	A logging handler that writes to stderr called
console which uses the formatter console.

	A logger with the name of this application set to DEBUG
level.

This example adds a new handler that writes to a file:

c.Application.logging_config = {
 'handlers': {
 'file': {
 'class': 'logging.FileHandler',
 'level': 'DEBUG',
 'filename': '<path/to/file>',
 }
 },
 'loggers': {
 '<application-name>': {
 'level': 'DEBUG',
 # NOTE: if you don't list the default "console"
 # handler here then it will be disabled
 'handlers': ['console', 'file'],
 },
 }
}

	JupyterApp.show_configBool
	Default: False

Instead of starting the Application, dump configuration to stdout

	JupyterApp.show_config_jsonBool
	Default: False

Instead of starting the Application, dump configuration to stdout (as JSON)

	JupyterQtConsoleApp.answer_yesBool
	Default: False

Answer yes to any prompts.

	JupyterQtConsoleApp.config_fileUnicode
	Default: ''

Full path of a config file.

	JupyterQtConsoleApp.config_file_nameUnicode
	Default: ''

Specify a config file to load.

	JupyterQtConsoleApp.confirm_exitCBool
	Default: True

Set to display confirmation dialog on exit. You can always use ‘exit’ or ‘quit’,
to force a direct exit without any confirmation.

	JupyterQtConsoleApp.connection_fileUnicode
	Default: ''

JSON file in which to store connection info [default: kernel-<pid>.json]

This file will contain the IP, ports, and authentication key needed to connect
clients to this kernel. By default, this file will be created in the security dir
of the current profile, but can be specified by absolute path.

	JupyterQtConsoleApp.control_portInt
	Default: 0

set the control (ROUTER) port [default: random]

	JupyterQtConsoleApp.display_bannerCBool
	Default: True

Whether to display a banner upon starting the QtConsole.

	JupyterQtConsoleApp.existingCUnicode
	Default: ''

Connect to an already running kernel

	JupyterQtConsoleApp.generate_configBool
	Default: False

Generate default config file.

	JupyterQtConsoleApp.hb_portInt
	Default: 0

set the heartbeat port [default: random]

	JupyterQtConsoleApp.hide_menubarCBool
	Default: False

Start the console window with the menu bar hidden.

	JupyterQtConsoleApp.iopub_portInt
	Default: 0

set the iopub (PUB) port [default: random]

	JupyterQtConsoleApp.ipUnicode
	Default: ''

	Set the kernel’s IP address [default localhost].
	If the IP address is something other than localhost, then
Consoles on other machines will be able to connect
to the Kernel, so be careful!

	JupyterQtConsoleApp.kernel_nameUnicode
	Default: 'python'

The name of the default kernel to start.

	JupyterQtConsoleApp.log_datefmtUnicode
	Default: '%Y-%m-%d %H:%M:%S'

The date format used by logging formatters for %(asctime)s

	JupyterQtConsoleApp.log_formatUnicode
	Default: '[%(name)s]%(highlevel)s %(message)s'

The Logging format template

	JupyterQtConsoleApp.log_levelany of 0``|``10``|``20``|``30``|``40``|``50``|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’``
	Default: 30

Set the log level by value or name.

	JupyterQtConsoleApp.logging_configDict
	Default: {}

Configure additional log handlers.

The default stderr logs handler is configured by the
log_level, log_datefmt and log_format settings.

This configuration can be used to configure additional handlers
(e.g. to output the log to a file) or for finer control over the
default handlers.

If provided this should be a logging configuration dictionary, for
more information see:
https://docs.python.org/3/library/logging.config.html#logging-config-dictschema

This dictionary is merged with the base logging configuration which
defines the following:

	A logging formatter intended for interactive use called
console.

	A logging handler that writes to stderr called
console which uses the formatter console.

	A logger with the name of this application set to DEBUG
level.

This example adds a new handler that writes to a file:

c.Application.logging_config = {
 'handlers': {
 'file': {
 'class': 'logging.FileHandler',
 'level': 'DEBUG',
 'filename': '<path/to/file>',
 }
 },
 'loggers': {
 '<application-name>': {
 'level': 'DEBUG',
 # NOTE: if you don't list the default "console"
 # handler here then it will be disabled
 'handlers': ['console', 'file'],
 },
 }
}

	JupyterQtConsoleApp.maximizeCBool
	Default: False

Start the console window maximized.

	JupyterQtConsoleApp.plainCBool
	Default: False

Use a plaintext widget instead of rich text (plain can’t print/save).

	JupyterQtConsoleApp.shell_portInt
	Default: 0

set the shell (ROUTER) port [default: random]

	JupyterQtConsoleApp.show_configBool
	Default: False

Instead of starting the Application, dump configuration to stdout

	JupyterQtConsoleApp.show_config_jsonBool
	Default: False

Instead of starting the Application, dump configuration to stdout (as JSON)

	JupyterQtConsoleApp.sshkeyUnicode
	Default: ''

Path to the ssh key to use for logging in to the ssh server.

	JupyterQtConsoleApp.sshserverUnicode
	Default: ''

The SSH server to use to connect to the kernel.

	JupyterQtConsoleApp.stdin_portInt
	Default: 0

set the stdin (ROUTER) port [default: random]

	JupyterQtConsoleApp.stylesheetUnicode
	Default: ''

path to a custom CSS stylesheet

	JupyterQtConsoleApp.transportany of 'tcp'``|’ipc’`` (case-insensitive)
	Default: 'tcp'

No description

	ConsoleWidget.ansi_codesBool
	Default: True

Whether to process ANSI escape codes.

	ConsoleWidget.buffer_sizeInt
	Default: 500

The maximum number of lines of text before truncation. Specifying a
non-positive number disables text truncation (not recommended).

	ConsoleWidget.console_heightInt
	Default: 25

	The height of the console at start time in number
	of characters (will double with vsplit paging)

	ConsoleWidget.console_widthInt
	Default: 81

	The width of the console at start time in number
	of characters (will double with hsplit paging)

	ConsoleWidget.execute_on_complete_inputBool
	Default: True

Whether to automatically execute on syntactically complete input.

If False, Shift-Enter is required to submit each execution.
Disabling this is mainly useful for non-Python kernels,
where the completion check would be wrong.

	ConsoleWidget.font_familyUnicode
	Default: ''

	The font family to use for the console.
	On OSX this defaults to Monaco, on Windows the default is
Consolas with fallback of Courier, and on other platforms
the default is Monospace.

	ConsoleWidget.font_sizeInt
	Default: 0

	The font size. If unconfigured, Qt will be entrusted
	with the size of the font.

	ConsoleWidget.gui_completionany of 'plain'``|’droplist’|’ncurses’``
	Default: 'ncurses'

The type of completer to use. Valid values are:

	‘plain’Show the available completion as a text list
	Below the editing area.

	‘droplist’: Show the completion in a drop down list navigable
	by the arrow keys, and from which you can select
completion by pressing Return.

	‘ncurses’Show the completion as a text list which is navigable by
	tab and arrow keys.

	ConsoleWidget.gui_completion_heightInt
	Default: 0

Set Height for completion.

	‘droplist’
	Height in pixels.

	‘ncurses’
	Maximum number of rows.

	ConsoleWidget.include_other_outputBool
	Default: False

	Whether to include output from clients
	other than this one sharing the same kernel.

Outputs are not displayed until enter is pressed.

	ConsoleWidget.kindany of 'plain'``|’rich’``
	Default: 'plain'

The type of underlying text widget to use. Valid values are ‘plain’,
which specifies a QPlainTextEdit, and ‘rich’, which specifies a
QTextEdit.

	ConsoleWidget.other_output_prefixUnicode
	Default: '[remote] '

Prefix to add to outputs coming from clients other than this one.

Only relevant if include_other_output is True.

	ConsoleWidget.pagingany of 'inside'``|’hsplit’|’vsplit’|’custom’|’none’``
	Default: 'inside'

The type of paging to use. Valid values are:

	‘inside’
	The widget pages like a traditional terminal.

	‘hsplit’
	When paging is requested, the widget is split horizontally. The top
pane contains the console, and the bottom pane contains the paged text.

	‘vsplit’
	Similar to ‘hsplit’, except that a vertical splitter is used.

	‘custom’
	No action is taken by the widget beyond emitting a
‘custom_page_requested(str)’ signal.

	‘none’
	The text is written directly to the console.

	ConsoleWidget.scrollbar_visibilityBool
	Default: True

	The visibility of the scrollar. If False then the scrollbar will be
	invisible.

	HistoryConsoleWidget.ansi_codesBool
	Default: True

Whether to process ANSI escape codes.

	HistoryConsoleWidget.buffer_sizeInt
	Default: 500

The maximum number of lines of text before truncation. Specifying a
non-positive number disables text truncation (not recommended).

	HistoryConsoleWidget.console_heightInt
	Default: 25

	The height of the console at start time in number
	of characters (will double with vsplit paging)

	HistoryConsoleWidget.console_widthInt
	Default: 81

	The width of the console at start time in number
	of characters (will double with hsplit paging)

	HistoryConsoleWidget.execute_on_complete_inputBool
	Default: True

Whether to automatically execute on syntactically complete input.

If False, Shift-Enter is required to submit each execution.
Disabling this is mainly useful for non-Python kernels,
where the completion check would be wrong.

	HistoryConsoleWidget.font_familyUnicode
	Default: ''

	The font family to use for the console.
	On OSX this defaults to Monaco, on Windows the default is
Consolas with fallback of Courier, and on other platforms
the default is Monospace.

	HistoryConsoleWidget.font_sizeInt
	Default: 0

	The font size. If unconfigured, Qt will be entrusted
	with the size of the font.

	HistoryConsoleWidget.gui_completionany of 'plain'``|’droplist’|’ncurses’``
	Default: 'ncurses'

The type of completer to use. Valid values are:

	‘plain’Show the available completion as a text list
	Below the editing area.

	‘droplist’: Show the completion in a drop down list navigable
	by the arrow keys, and from which you can select
completion by pressing Return.

	‘ncurses’Show the completion as a text list which is navigable by
	tab and arrow keys.

	HistoryConsoleWidget.gui_completion_heightInt
	Default: 0

Set Height for completion.

	‘droplist’
	Height in pixels.

	‘ncurses’
	Maximum number of rows.

	HistoryConsoleWidget.history_lockBool
	Default: False

No description

	HistoryConsoleWidget.include_other_outputBool
	Default: False

	Whether to include output from clients
	other than this one sharing the same kernel.

Outputs are not displayed until enter is pressed.

	HistoryConsoleWidget.kindany of 'plain'``|’rich’``
	Default: 'plain'

The type of underlying text widget to use. Valid values are ‘plain’,
which specifies a QPlainTextEdit, and ‘rich’, which specifies a
QTextEdit.

	HistoryConsoleWidget.other_output_prefixUnicode
	Default: '[remote] '

Prefix to add to outputs coming from clients other than this one.

Only relevant if include_other_output is True.

	HistoryConsoleWidget.pagingany of 'inside'``|’hsplit’|’vsplit’|’custom’|’none’``
	Default: 'inside'

The type of paging to use. Valid values are:

	‘inside’
	The widget pages like a traditional terminal.

	‘hsplit’
	When paging is requested, the widget is split horizontally. The top
pane contains the console, and the bottom pane contains the paged text.

	‘vsplit’
	Similar to ‘hsplit’, except that a vertical splitter is used.

	‘custom’
	No action is taken by the widget beyond emitting a
‘custom_page_requested(str)’ signal.

	‘none’
	The text is written directly to the console.

	HistoryConsoleWidget.scrollbar_visibilityBool
	Default: True

	The visibility of the scrollar. If False then the scrollbar will be
	invisible.

	FrontendWidget.ansi_codesBool
	Default: True

Whether to process ANSI escape codes.

	FrontendWidget.bannerUnicode
	Default: ''

No description

	FrontendWidget.buffer_sizeInt
	Default: 500

The maximum number of lines of text before truncation. Specifying a
non-positive number disables text truncation (not recommended).

	FrontendWidget.clear_on_kernel_restartBool
	Default: True

Whether to clear the console when the kernel is restarted

	FrontendWidget.confirm_restartBool
	Default: True

Whether to ask for user confirmation when restarting kernel

	FrontendWidget.console_heightInt
	Default: 25

	The height of the console at start time in number
	of characters (will double with vsplit paging)

	FrontendWidget.console_widthInt
	Default: 81

	The width of the console at start time in number
	of characters (will double with hsplit paging)

	FrontendWidget.enable_calltipsBool
	Default: True

Whether to draw information calltips on open-parentheses.

	FrontendWidget.execute_on_complete_inputBool
	Default: True

Whether to automatically execute on syntactically complete input.

If False, Shift-Enter is required to submit each execution.
Disabling this is mainly useful for non-Python kernels,
where the completion check would be wrong.

	FrontendWidget.font_familyUnicode
	Default: ''

	The font family to use for the console.
	On OSX this defaults to Monaco, on Windows the default is
Consolas with fallback of Courier, and on other platforms
the default is Monospace.

	FrontendWidget.font_sizeInt
	Default: 0

	The font size. If unconfigured, Qt will be entrusted
	with the size of the font.

	FrontendWidget.gui_completionany of 'plain'``|’droplist’|’ncurses’``
	Default: 'ncurses'

The type of completer to use. Valid values are:

	‘plain’Show the available completion as a text list
	Below the editing area.

	‘droplist’: Show the completion in a drop down list navigable
	by the arrow keys, and from which you can select
completion by pressing Return.

	‘ncurses’Show the completion as a text list which is navigable by
	tab and arrow keys.

	FrontendWidget.gui_completion_heightInt
	Default: 0

Set Height for completion.

	‘droplist’
	Height in pixels.

	‘ncurses’
	Maximum number of rows.

	FrontendWidget.history_lockBool
	Default: False

No description

	FrontendWidget.include_other_outputBool
	Default: False

	Whether to include output from clients
	other than this one sharing the same kernel.

Outputs are not displayed until enter is pressed.

	FrontendWidget.kindany of 'plain'``|’rich’``
	Default: 'plain'

The type of underlying text widget to use. Valid values are ‘plain’,
which specifies a QPlainTextEdit, and ‘rich’, which specifies a
QTextEdit.

	FrontendWidget.lexer_classDottedObjectName
	Default: traitlets.Undefined

The pygments lexer class to use.

	FrontendWidget.other_output_prefixUnicode
	Default: '[remote] '

Prefix to add to outputs coming from clients other than this one.

Only relevant if include_other_output is True.

	FrontendWidget.pagingany of 'inside'``|’hsplit’|’vsplit’|’custom’|’none’``
	Default: 'inside'

The type of paging to use. Valid values are:

	‘inside’
	The widget pages like a traditional terminal.

	‘hsplit’
	When paging is requested, the widget is split horizontally. The top
pane contains the console, and the bottom pane contains the paged text.

	‘vsplit’
	Similar to ‘hsplit’, except that a vertical splitter is used.

	‘custom’
	No action is taken by the widget beyond emitting a
‘custom_page_requested(str)’ signal.

	‘none’
	The text is written directly to the console.

	FrontendWidget.scrollbar_visibilityBool
	Default: True

	The visibility of the scrollar. If False then the scrollbar will be
	invisible.

	IPythonWidget.ansi_codesBool
	Default: True

Whether to process ANSI escape codes.

	IPythonWidget.bannerUnicode
	Default: ''

No description

	IPythonWidget.buffer_sizeInt
	Default: 500

The maximum number of lines of text before truncation. Specifying a
non-positive number disables text truncation (not recommended).

	IPythonWidget.clear_on_kernel_restartBool
	Default: True

Whether to clear the console when the kernel is restarted

	IPythonWidget.confirm_restartBool
	Default: True

Whether to ask for user confirmation when restarting kernel

	IPythonWidget.console_heightInt
	Default: 25

	The height of the console at start time in number
	of characters (will double with vsplit paging)

	IPythonWidget.console_widthInt
	Default: 81

	The width of the console at start time in number
	of characters (will double with hsplit paging)

	IPythonWidget.enable_calltipsBool
	Default: True

Whether to draw information calltips on open-parentheses.

	IPythonWidget.execute_on_complete_inputBool
	Default: True

Whether to automatically execute on syntactically complete input.

If False, Shift-Enter is required to submit each execution.
Disabling this is mainly useful for non-Python kernels,
where the completion check would be wrong.

	IPythonWidget.font_familyUnicode
	Default: ''

	The font family to use for the console.
	On OSX this defaults to Monaco, on Windows the default is
Consolas with fallback of Courier, and on other platforms
the default is Monospace.

	IPythonWidget.font_sizeInt
	Default: 0

	The font size. If unconfigured, Qt will be entrusted
	with the size of the font.

	IPythonWidget.gui_completionany of 'plain'``|’droplist’|’ncurses’``
	Default: 'ncurses'

The type of completer to use. Valid values are:

	‘plain’Show the available completion as a text list
	Below the editing area.

	‘droplist’: Show the completion in a drop down list navigable
	by the arrow keys, and from which you can select
completion by pressing Return.

	‘ncurses’Show the completion as a text list which is navigable by
	tab and arrow keys.

	IPythonWidget.gui_completion_heightInt
	Default: 0

Set Height for completion.

	‘droplist’
	Height in pixels.

	‘ncurses’
	Maximum number of rows.

	IPythonWidget.history_lockBool
	Default: False

No description

	IPythonWidget.include_other_outputBool
	Default: False

	Whether to include output from clients
	other than this one sharing the same kernel.

Outputs are not displayed until enter is pressed.

	IPythonWidget.kindany of 'plain'``|’rich’``
	Default: 'plain'

The type of underlying text widget to use. Valid values are ‘plain’,
which specifies a QPlainTextEdit, and ‘rich’, which specifies a
QTextEdit.

	IPythonWidget.lexer_classDottedObjectName
	Default: traitlets.Undefined

The pygments lexer class to use.

	IPythonWidget.other_output_prefixUnicode
	Default: '[remote] '

Prefix to add to outputs coming from clients other than this one.

Only relevant if include_other_output is True.

	IPythonWidget.pagingany of 'inside'``|’hsplit’|’vsplit’|’custom’|’none’``
	Default: 'inside'

The type of paging to use. Valid values are:

	‘inside’
	The widget pages like a traditional terminal.

	‘hsplit’
	When paging is requested, the widget is split horizontally. The top
pane contains the console, and the bottom pane contains the paged text.

	‘vsplit’
	Similar to ‘hsplit’, except that a vertical splitter is used.

	‘custom’
	No action is taken by the widget beyond emitting a
‘custom_page_requested(str)’ signal.

	‘none’
	The text is written directly to the console.

	IPythonWidget.scrollbar_visibilityBool
	Default: True

	The visibility of the scrollar. If False then the scrollbar will be
	invisible.

	JupyterWidget.ansi_codesBool
	Default: True

Whether to process ANSI escape codes.

	JupyterWidget.bannerUnicode
	Default: ''

No description

	JupyterWidget.buffer_sizeInt
	Default: 500

The maximum number of lines of text before truncation. Specifying a
non-positive number disables text truncation (not recommended).

	JupyterWidget.clear_on_kernel_restartBool
	Default: True

Whether to clear the console when the kernel is restarted

	JupyterWidget.confirm_restartBool
	Default: True

Whether to ask for user confirmation when restarting kernel

	JupyterWidget.console_heightInt
	Default: 25

	The height of the console at start time in number
	of characters (will double with vsplit paging)

	JupyterWidget.console_widthInt
	Default: 81

	The width of the console at start time in number
	of characters (will double with hsplit paging)

	JupyterWidget.editorUnicode
	Default: ''

A command for invoking a GUI text editor. If the string contains a
{filename} format specifier, it will be used. Otherwise, the filename
will be appended to the end the command. To use a terminal text editor,
the command should launch a new terminal, e.g.
"gnome-terminal -- vim".

	JupyterWidget.editor_lineUnicode
	Default: ''

The editor command to use when a specific line number is requested. The
string should contain two format specifiers: {line} and {filename}. If
this parameter is not specified, the line number option to the %edit
magic will be ignored.

	JupyterWidget.enable_calltipsBool
	Default: True

Whether to draw information calltips on open-parentheses.

	JupyterWidget.execute_on_complete_inputBool
	Default: True

Whether to automatically execute on syntactically complete input.

If False, Shift-Enter is required to submit each execution.
Disabling this is mainly useful for non-Python kernels,
where the completion check would be wrong.

	JupyterWidget.font_familyUnicode
	Default: ''

	The font family to use for the console.
	On OSX this defaults to Monaco, on Windows the default is
Consolas with fallback of Courier, and on other platforms
the default is Monospace.

	JupyterWidget.font_sizeInt
	Default: 0

	The font size. If unconfigured, Qt will be entrusted
	with the size of the font.

	JupyterWidget.gui_completionany of 'plain'``|’droplist’|’ncurses’``
	Default: 'ncurses'

The type of completer to use. Valid values are:

	‘plain’Show the available completion as a text list
	Below the editing area.

	‘droplist’: Show the completion in a drop down list navigable
	by the arrow keys, and from which you can select
completion by pressing Return.

	‘ncurses’Show the completion as a text list which is navigable by
	tab and arrow keys.

	JupyterWidget.gui_completion_heightInt
	Default: 0

Set Height for completion.

	‘droplist’
	Height in pixels.

	‘ncurses’
	Maximum number of rows.

	JupyterWidget.history_lockBool
	Default: False

No description

	JupyterWidget.in_promptUnicode
	Default: 'In [%i]: '

No description

	JupyterWidget.include_other_outputBool
	Default: False

	Whether to include output from clients
	other than this one sharing the same kernel.

Outputs are not displayed until enter is pressed.

	JupyterWidget.input_sepUnicode
	Default: '\\n'

No description

	JupyterWidget.kindany of 'plain'``|’rich’``
	Default: 'plain'

The type of underlying text widget to use. Valid values are ‘plain’,
which specifies a QPlainTextEdit, and ‘rich’, which specifies a
QTextEdit.

	JupyterWidget.lexer_classDottedObjectName
	Default: traitlets.Undefined

The pygments lexer class to use.

	JupyterWidget.other_output_prefixUnicode
	Default: '[remote] '

Prefix to add to outputs coming from clients other than this one.

Only relevant if include_other_output is True.

	JupyterWidget.out_promptUnicode
	Default: 'Out[%i]: '

No description

	JupyterWidget.output_sepUnicode
	Default: ''

No description

	JupyterWidget.output_sep2Unicode
	Default: ''

No description

	JupyterWidget.pagingany of 'inside'``|’hsplit’|’vsplit’|’custom’|’none’``
	Default: 'inside'

The type of paging to use. Valid values are:

	‘inside’
	The widget pages like a traditional terminal.

	‘hsplit’
	When paging is requested, the widget is split horizontally. The top
pane contains the console, and the bottom pane contains the paged text.

	‘vsplit’
	Similar to ‘hsplit’, except that a vertical splitter is used.

	‘custom’
	No action is taken by the widget beyond emitting a
‘custom_page_requested(str)’ signal.

	‘none’
	The text is written directly to the console.

	JupyterWidget.scrollbar_visibilityBool
	Default: True

	The visibility of the scrollar. If False then the scrollbar will be
	invisible.

	JupyterWidget.style_sheetUnicode
	Default: ''

	A CSS stylesheet. The stylesheet can contain classes for:
	
	Qt: QPlainTextEdit, QFrame, QWidget, etc

	Pygments: .c, .k, .o, etc. (see PygmentsHighlighter)

	QtConsole: .error, .in-prompt, .out-prompt, etc

	JupyterWidget.syntax_styleUnicode
	Default: ''

If not empty, use this Pygments style for syntax highlighting.
Otherwise, the style sheet is queried for Pygments style
information.

	KernelManager.autorestartBool
	Default: True

Should we autorestart the kernel if it dies.

	KernelManager.connection_fileUnicode
	Default: ''

JSON file in which to store connection info [default: kernel-<pid>.json]

This file will contain the IP, ports, and authentication key needed to connect
clients to this kernel. By default, this file will be created in the security dir
of the current profile, but can be specified by absolute path.

	KernelManager.control_portInt
	Default: 0

set the control (ROUTER) port [default: random]

	KernelManager.hb_portInt
	Default: 0

set the heartbeat port [default: random]

	KernelManager.iopub_portInt
	Default: 0

set the iopub (PUB) port [default: random]

	KernelManager.ipUnicode
	Default: ''

	Set the kernel’s IP address [default localhost].
	If the IP address is something other than localhost, then
Consoles on other machines will be able to connect
to the Kernel, so be careful!

	KernelManager.shell_portInt
	Default: 0

set the shell (ROUTER) port [default: random]

	KernelManager.shutdown_wait_timeFloat
	Default: 5.0

Time to wait for a kernel to terminate before killing it, in seconds. When a shutdown request is initiated, the kernel will be immediately sent an interrupt (SIGINT), followedby a shutdown_request message, after 1/2 of shutdown_wait_time`it will be sent a terminate (SIGTERM) request, and finally at the end of `shutdown_wait_time will be killed (SIGKILL). terminate and kill may be equivalent on windows. Note that this value can beoverridden by the in-use kernel provisioner since shutdown times mayvary by provisioned environment.

	KernelManager.stdin_portInt
	Default: 0

set the stdin (ROUTER) port [default: random]

	KernelManager.transportany of 'tcp'``|’ipc’`` (case-insensitive)
	Default: 'tcp'

No description

	KernelRestarter.debugBool
	Default: False

Whether to include every poll event in debugging output.

Has to be set explicitly, because there will be a lot of output.

	KernelRestarter.random_ports_until_aliveBool
	Default: True

Whether to choose new random ports when restarting before the kernel is alive.

	KernelRestarter.restart_limitInt
	Default: 5

The number of consecutive autorestarts before the kernel is presumed dead.

	KernelRestarter.stable_start_timeFloat
	Default: 10.0

The time in seconds to consider the kernel to have completed a stable start up.

	KernelRestarter.time_to_deadFloat
	Default: 3.0

Kernel heartbeat interval in seconds.

	Session.buffer_thresholdInt
	Default: 1024

Threshold (in bytes) beyond which an object’s buffer should be extracted to avoid pickling.

	Session.check_pidBool
	Default: True

Whether to check PID to protect against calls after fork.

This check can be disabled if fork-safety is handled elsewhere.

	Session.copy_thresholdInt
	Default: 65536

Threshold (in bytes) beyond which a buffer should be sent without copying.

	Session.debugBool
	Default: False

Debug output in the Session

	Session.digest_history_sizeInt
	Default: 65536

The maximum number of digests to remember.

The digest history will be culled when it exceeds this value.

	Session.item_thresholdInt
	Default: 64

	The maximum number of items for a container to be introspected for custom serialization.
	Containers larger than this are pickled outright.

	Session.keyCBytes
	Default: b''

execution key, for signing messages.

	Session.keyfileUnicode
	Default: ''

path to file containing execution key.

	Session.metadataDict
	Default: {}

Metadata dictionary, which serves as the default top-level metadata dict for each message.

	Session.packerDottedObjectName
	Default: 'json'

	The name of the packer for serializing messages.
	Should be one of ‘json’, ‘pickle’, or an import name
for a custom callable serializer.

	Session.sessionCUnicode
	Default: ''

The UUID identifying this session.

	Session.signature_schemeUnicode
	Default: 'hmac-sha256'

	The digest scheme used to construct the message signatures.
	Must have the form ‘hmac-HASH’.

	Session.unpackerDottedObjectName
	Default: 'json'

	The name of the unpacker for unserializing messages.
	Only used with custom functions for packer.

	Session.usernameUnicode
	Default: 'username'

Username for the Session. Default is your system username.

Changes in Jupyter Qt console

5.4

5.4.0

5.4.0 on GitHub [https://github.com/jupyter/qtconsole/milestones/5.4.0]

Additions

	Add ConsoleWidget.gui_completion_height option to configure the maximum
number of rows or height in pixels of completions when the
ConsoleWidget.gui_completion option has values ‘ncurses’ or ‘droplist’,
respectively.

Changes

	Fix some errors with PySide6 6.4.0.

	Fix mixed input and print statements on macOS.

	Drop usage of disutils.

5.3

5.3.2

5.3.2 on GitHub [https://github.com/jupyter/qtconsole/milestones/5.3.2]

	Fix syntax highlighting with multiline inputs.

	Don’t call processEvents when showing input prompts on Mac because it’s not
necessary.

5.3.1

5.3.1 on GitHub [https://github.com/jupyter/qtconsole/milestones/5.3.1]

	Fix segfault when performing code completion on Qt6.

	Fix mixed input and print statements.

	Fix switching syntax highlighting styles on PySide2 and PySide6.

5.3.0

5.3.0 on GitHub [https://github.com/jupyter/qtconsole/milestones/5.3.0]

Additions

	Add support for PyQt6.

Changes

	Don’t show spurious blank lines when running input statements.

	Fix showing Latex images with dark background colors.

	Drop support for Python 3.6

5.2

5.2.2

5.2.2 on GitHub [https://github.com/jupyter/qtconsole/milestones/5.2.2]

	Fix implicit int to float conversion for Python 3.10 compatibility.

	Fix building documentation in ReadTheDocs.

5.2.1

5.2.1 on GitHub [https://github.com/jupyter/qtconsole/milestones/5.2.1]

	Fix error when deleting CallTipWidget.

	Another fix for the ‘Erase in Line’ ANSI code.

5.2.0

5.2.0 on GitHub [https://github.com/jupyter/qtconsole/milestones/5.2.0]

Changes

	Fix hidden execution requests.

	Fix ANSI code for erase line.

5.1

5.1.1

5.1.1 on GitHub [https://github.com/jupyter/qtconsole/milestones/5.1.1]

	Improve handling of different keyboard combinations.

	Move cursor to the beginning of buffer if on the same line.

5.1.0

5.1.0 on GitHub [https://github.com/jupyter/qtconsole/milestones/5.1.0]

Additions

	Two new keyboard shortcuts: Ctrl + Up/Down to go to the beginning/end
of the buffer.

Changes

	Monkeypatch RegexLexer only while in use by qtconsole.

	Import Empty from queue module.

5.0

5.0.3

5.0.3 on GitHub [https://github.com/jupyter/qtconsole/milestones/5.0.3]

	Emit kernel_restarted signal only after a kernel crash.

5.0.2

5.0.2 on GitHub [https://github.com/jupyter/qtconsole/milestones/5.0.2]

	Fix launching issue with Big Sur

	Remove partial prompt on copy

5.0.1

5.0.1 on GitHub [https://github.com/jupyter/qtconsole/milestones/5.0.1]

	Add python_requires to setup.py for Python 3.6+ compatibility

5.0.0

5.0.0 on GitHub [https://github.com/jupyter/qtconsole/milestones/5.0]

Additions

	Add option to set completion type while running.

Changes

	Emit kernel_restarted after restarting kernel.

	Drop support for Python 2.7 and 3.5.

4.7

4.7.7

4.7.7 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.7.7]

	Change font width calculation to use horizontalAdvance

4.7.6

4.7.6 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.7.6]

	Replace qApp with QApplication.instance().

	Fix QFontMetrics.width deprecation.

4.7.5

4.7.5 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.7.5]

	Print input if there is no prompt.

4.7.4

4.7.4 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.7.4]

	Fix completion widget text for paths and files.

	Make Qtconsole work on Python 3.8 and Windows.

4.7.3

4.7.3 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.7.3]

	Fix all misuses of QtGui.

4.7.2

4.7.2 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.7.2]

	Set updated prompt as previous prompt object in JupyterWidget.

	Fix some Qt incorrect imports.

4.7.1

4.7.1 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.7.1]

	Remove common prefix from path completions.

	Use QtWidgets instead of QtGui to create QMenu instances.

4.7.0

4.7.0 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.7.0]

Additions

	Use qtpy as the shim layer for Python Qt bindings and remove our own
shim.

Changes

	Remove code to expand tabs to spaces.

	Skip history if it is the same as the input buffer.

4.6

4.6.0

4.6.0 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.6]

Additions

	Add an option to configure scrollbar visibility.

Changes

	Avoid introducing a new line when executing code.

4.5

4.5.5

4.5.5 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.5.5]

	Set console to read only after input.

	Allow text to be added before the prompt while autocompleting.

	Scroll when adding text even when not executing.

4.5.4

4.5.4 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.5.4]

	Fix emoji highlighting.

4.5.3

4.5.3 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.5.3]

	Fix error when closing comms.

	Fix prompt automatically scrolling down on execution.

4.5.2

4.5.2 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.5.2]

	Remove deprecation warnings in Python 3.8

	Improve positioning and content of completion widget.

	Scroll down for output from remote commands.

4.5.1

4.5.1 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.5.1]

	Only use setuptools in setup.py to fix uploading tarballs to PyPI.

4.5.0

4.5.0 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.5]

Additions

	Add Comms to qtconsole.

	Add kernel language name as an attribute of JupyterWidget.

Changes

	Use new traitlets API with decorators.

4.4

4.4.4

4.4.4 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.4.4]

	Prevent cursor from moving to the end of the line while debugging.

4.4.3

4.4.3 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.4.3]

	Fix complete statements check inside indented block for Python after
the IPython 7 release.

	Improve auto-scrolling during execution.

4.4.2

4.4.2 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.4.2]

	Fix incompatibility with PyQt5 5.11.

4.4.1

4.4.1 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.4.1]

	Fix setting width and height when displaying images with IPython’s Image.

	Avoid displaying errors when using Matplotlib to generate pngs from Latex.

4.4.0

4.4.0 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.4]

Additions

	Control-D enters an EOT character if kernel is executing and input is
empty.

	Implement block indent on multiline selection with Tab.

	Change the syntax highlighting style used in the console at any time. It can
be done in the menu View > Syntax Style.

Changes

	Change Control-Shift-A to select cell contents first.

	Change default tab width to 4 spaces.

	Enhance handling of input from other clients.

	Don’t block the console when the kernel is asked for completions.

Fixes

	Fix bug that make PySide2 a forbidden binding.

	Fix IndexError when copying prompts.

	Fix behavior of right arrow key.

	Fix behavior of Control-Backspace and Control-Del

4.3

4.3.1

4.3.1 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.3.1]

	Make %clear to delete previous output on Windows.

	Fix SVG rendering.

4.3.0

4.3 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.3]

Additions

	Add Shift-Tab shortcut to unindent text

	Add Control-R shortcut to rename the current tab

	Add Alt-R shortcut to set the main window title

	Add Command-Alt-Left and Command-Alt-Right shortcut to switch
tabs on macOS

	Add support for PySide2

	Add support for Python 3.5

	Add support for 24 bit ANSI color codes

	Add option to create new tab connected to the existing kernel

Changes

	Rename ConsoleWidget.width/height traits to console_width/console_height
to avoid a name clash with the QWidget properties. Note: the name change
could be, in rare cases if a name collision exists, a code-breaking
change.

	Change Tab key behavior to always indent to the next increment of 4 spaces

	Change Home key behavior to alternate cursor between the beginning of text
(ignoring leading spaces) and beginning of the line

	Improve documentation of various options and clarified the docs in some places

	Move documentation to ReadTheDocs

Fixes

	Fix automatic indentation of new lines that are inserted in the middle of a
cell

	Fix regression where prompt would never be shown for --existing consoles

	Fix python.exe -m qtconsole on Windows

	Fix showing error messages when running a script using %run

	Fix invalid cursor position error and subsequent freezing of user input

	Fix syntax coloring when attaching to non-IPython kernels

	Fix printing when using QT5

	Fix Control-K shortcut (delete until end of line) on macOS

	Fix history browsing (Up/Down keys) when lines are longer than
the terminal width

	Fix saving HTML with inline PNG for Python 3

	Various internal bugfixes

4.2

4.2 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.2]

	various latex display fixes

	improvements for embedding in Qt applications (use existing Qt API if one is already loaded)

4.1

4.1.1

4.1.1 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.1.1]

	Set AppUserModelID for taskbar icon on Windows 7 and later

4.1.0

4.1 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.1]

	fix regressions in copy/paste, completion

	fix issues with inprocess IPython kernel

	fix jupyter qtconsole --generate-config

4.0

4.0.1

	fix installation issues, including setuptools entrypoints for Windows

	Qt5 fixes

4.0.0

4.0 on GitHub [https://github.com/jupyter/qtconsole/milestones/4.0]

First release of the Qt console as a standalone package.

Index

 nav.xhtml

 Table of Contents

 		
 The Qt Console for Jupyter

 		
 Installation

 		
 Install using conda

 		
 Install using pip

 		
 Installing Qt (if needed)

 		
 Configuration options

 		
 Options

 		
 Changes in Jupyter Qt console

 		
 5.4

 		
 5.4.0

 		
 5.3

 		
 5.3.2

 		
 5.3.1

 		
 5.3.0

 		
 5.2

 		
 5.2.2

 		
 5.2.1

 		
 5.2.0

 		
 5.1

 		
 5.1.1

 		
 5.1.0

 		
 5.0

 		
 5.0.3

 		
 5.0.2

 		
 5.0.1

 		
 5.0.0

 		
 4.7

 		
 4.7.7

 		
 4.7.6

 		
 4.7.5

 		
 4.7.4

 		
 4.7.3

 		
 4.7.2

 		
 4.7.1

 		
 4.7.0

 		
 4.6

 		
 4.6.0

 		
 4.5

 		
 4.5.5

 		
 4.5.4

 		
 4.5.3

 		
 4.5.2

 		
 4.5.1

 		
 4.5.0

 		
 4.4

 		
 4.4.4

 		
 4.4.3

 		
 4.4.2

 		
 4.4.1

 		
 4.4.0

 		
 4.3

 		
 4.3.1

 		
 4.3.0

 		
 4.2

 		
 4.1

 		
 4.1.1

 		
 4.1.0

 		
 4.0

 		
 4.0.1

 		
 4.0.0

_static/plus.png

_static/file.png

_static/minus.png

_images/qtconsole.png
help

object?

guiref

29.79°N,

28.90°N

28.01°N]

axhline(®, color="
grid()

Tegend()
xlabel("$x3")

: title(r'Bessel functions $3_n(x)$')
<matplotlib. text.Text object at Ox7fcddc1795d0>

(r265:79663, Apr 16 2010, 13:57:41)

Type "copyright”, "credits” or "license” for more information.

Tpython 6.11.alphal.git -- An enhanced Interactive Python.

-> Introduction and overview of IPython's features.

mm(kmf -> Quick reference.

-> Python’s own help systen.
-> Details about ‘object’, use "object??’ for extra details.
-> A brief reference about the graphical user interface.

In [1]: run recarr_simple.py

Seismic stations in the Himalaya

In [2]: from scipy import special as sp

= linspace(9, 20, 100)

for n in range(4):

y = sp.jn(n, x)
plot(x, y, labe

'$3_%s()$" % n)
reen’, label="_nolegend ')

Bessel functions J, (x)

10

0.5}

0.0!

n [3]:

« « — n@
— A
— 5
, , G
b g 10 15 20

_images/besselj.png
0006 1Python

In [34]: from scipy.special import jn
In [35]: X = linspace(®,4pi)

In [36: for i in range(e):
plot(x,jnCi,x))

1.0

0.5}

0.0!

10

12

14

_images/colors_dark.png
In [3]: str?
Type: type
fose Closs: <type type'>
String Forn: <type str'>
Nanespace: Python builtin
Docstring:

str(object) -> string

Return a nice string representation of the object.

If the argument is a string, the return value is the same object.
In [4]: @decorator
: def f(a,

5):

a docstring’
for i in range(10):
print (i)
raise Exception(

NameError Traceback (most recent call last)
/Users/minrk/<string> in <module>()

Nonetrror: name 'decorator’ is not defined

In [5]:

